O_2 were carried out for prolonged periods, ~5 h, with less than 50% loss of $[Q/QH_2]_{surf}$. Since the reduction of O₂ is mass transport limited, fractional loss of $[Q/QH_2]_{surf.}$ need not lead to an equal fractional decline in observed current density. In such experiments we have determined $>10^6$ turnovers at >100 turnovers/s for the $[Q/QH_2]_{surf.}$ reagent without decline in current density. Concentrations of several millimolar H_2O_2 in pH 7.2 H_2O /electrolyte have been generated with >90% Coulombic efficiency. The $W/[Q/QH_2]_{surf.}$ electrodes are durable in deliberately prepared 0.1 M H₂O₂ pH 7.2 solutions and still efficiently reduce O_2 to H_2O_2 under these conditions for at least 30 min with <10% decline in current density.

The behavior of $p-WS_2/[Q/QH_2]_{surf.}$ photoelectrodes is consistent with the conclusion that H_2O_2 can be prepared by the visible light-driven reduction of O₂. Preliminary experiments show that the derivatized, but not naked, p-WS₂ can be used to reduce O₂ to H_2O_2 at an electrode potential of ~+0.2 V vs. SCE at pH 7.2 with a power conversion efficiency of $\sim 2\%$ for 632.8-nm, ~ 10 mW/cm^2 input energy. This represents significant improvement compared to an earlier study of a p-type Si-based¹⁵ system for photoreduction of O₂ that required electrode potentials negative, not positive, of $E^{\circ'}(O_2/H_2O_2)$.

Acknowledgment. We thank Dow Chemical U.S. for support of this research.

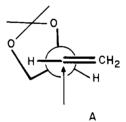
Registry No. 1a, 83027-25-2; 1b, 83027-26-3; 1b hydroquinone derivative, 83027-28-5; WS₂, 12138-09-9; O₂, 7782-44-7; H₂O₂, 7722-84-1; Pt, 7440-06-4; W, 7440-33-7; BrPr, 106-94-5; Br(CH2)3Si(OMe)3, 51826-90-5; 2-chloro-3-[[2-(dimethylamino)ethyl]amino]-1,4-naphthoquinone, 83027-27-4.

(15) Calabrese, G. S.; Wrighton, M. S. J. Electrochem. Soc. 1981, 128, 1014.

Diastereoselection in Intermolecular Nitrile Oxide Cycloaddition (NOC) Reactions: Confirmation of the "Anti-Periplanar Effect" through a Simple Synthesis of 2-Deoxy-D-ribose[†]

Alan P. Kozikowski* and Arun K. Ghosh

Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260 Received June 7, 1982


We have initiated recently a program to examine the extent to which an allylic asymmetric center can control diastereoface selection in both inter- and intramolecular additions of nitrile oxides to olefins.¹ While the extent of such diastereoselection appears to be relatively small when there is little to distinguish the allylic groups on a steric or electronic basis (except in intramolecular cyclizations where the allylic center is within the nonisoxazoline ring being formed),² we now report that an allylic oxygen substituent can, on the other hand, serve as a useful control element for achieving diastereoface selectivity in [3 + 2] cycloaddition reactions. We illustrate this new concept in stereocontrol through a simple synthesis of 2-deoxy-D-ribose.

Optically active (+)-(S)-isopropylidene-3-butene-1,2-diol, prepared from isopropylidene D-glyceraldehyde by reaction with methylenetriphenylphosphorane,³ was reacted with (carboethoxy)formonitrile oxide⁴ to afford an 80:20 mixture of diastereomeric cycloadducts. These products were separated by gravity chromatography, and the major isomer 3 (Scheme I) was heated with sodium hydroxide to effect the following transformations: (a) ester hydrolysis; (b) decarboxylative ring opening of the isoxazoline to a β -hydroxy nitrile; (c) hydrolysis of nitrile to carboxylate. Acidification and diazomethane treatment then yielded 4 (74% overall yield from 3).⁵ On converting this compound to its acetate and stirring with trifluoroacetic acid, the acetate of 2-deoxy-D-ribono-1,4-lactone (5) was formed (71%). The NMR of this compound was identical with that reported previously by Mukaiyama;⁶ $[\alpha]^{24}_{D} = -12^{\circ} (c \ 0.75, CH_2Cl_2); IR$ (thin film) 3450, 1785, 1740, 1240 cm⁻¹; ¹H NMR (CDCl₃) δ 2.07 (s, 3 H), 2.55 (dd, 1 H, J = 2.5, 18 Hz), 2.95 (dd, 1 H, J= 7, 18 Hz), 3.40-3.60 (m, 1 H), 3.85 (d, 2 H, J = 2.5 Hz), 4.40-4.60 (m, 1 H), 5.20-5.50 (m, 1 H); mass spectrum (15 eV), m/e 143, 84, 83, 53.

Trifluoroacetic acid treatment of 4 followed by bis(3methyl-2-butyl)borane reduction of the intermediate lactone gave 2-deoxy-D-ribose (7).^{6,7} The synthetic material was identical with authentic 2-deoxy-D-ribose by the standard criteria of comparison. Alternatively, the lactone 6 was silvlated to give the crystalline bis(tert-butyldimethylsilyl) derivative 8 (mp 76 °C). Reduction of this product with Dibal gave the disilyl derivative 9 in 92% yield $[[\alpha]^{24}_{D} = +23.6^{\circ}$ (after 8 h, c 0.096, MeOH)]. The 300-MHz ¹H NMR of 9 was identical with that obtained for the product generated by silvlating authentic 2-deoxy-D-ribose and chromatographically separating out the disilyl derivative.

Additionally, it was observed that acetonitrile oxide reacted with 2 to deliver after N-O bond hydrogenolysis the erythro β -hydroxy ketone as the major product (¹H NMR ratio 88:12).⁸ By reacting 2 with the nitrile oxide drived from the tetrahydropyranyl derivative of 2-nitroethanol⁴ and then effecting both cleavage of the THP group and hydrogenolysis of the isoxazoline by Raney nickel/AlCl₃/MeOH/H₂O treatment, we generated nearly a single dihydroxy ketone (>94% by HPLC analysis).⁵ Sodium periodate cleavage of this α -hydroxy ketone followed by diazomethane treatment yielded 4 as the major isomer. These studies thus reveal that the sense of the addition of a nitrile oxide to 2 is independent of the nature of the nitrile oxide employed.

One can rationalize the production of 2-deoxy-D-ribose as the major product of the above scheme through the following two factors: (a) cycloaddition occurs preferentially through a transition state resembling conformer A;¹⁰ (b) addition of the nitrile oxide

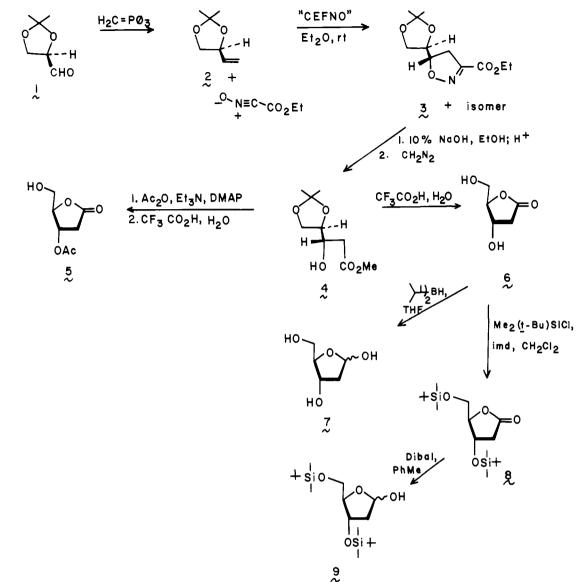
occurs anti to the C-O bond (the anti-periplanar effect).¹¹ This latter factor is due presumably to the minimization of secondary antibonding orbital interactions as predicted on a theoretical basis by the work of Houk et al. The explanation for such stereose-

(5) The ¹H NMR of 4 has also been compared with the ¹H NMR of the product formed from the reaction of the anion of ethyl acetate with 1, which is known to be an 85:15 mixture of diastereomers with 4 (ethyl ester) predominating. The ABX patterns of the α-methylene protons were identical.
(6) Murakami, M.; Mukaiyama, T. Chem. Lett. 1982, 241.
(7) Nakaminami, G.; Shioi, S.; Sugiyama, Y.; Isemura, S.; Shibuya, M.;

0002-7863/82/1504-5788\$01.25/0 © 1982 American Chemical Society

[†]Dedicated to the memory of Dr. Anthony Ames.

Kozikowski, A. P.; Chen, Y. Y. J. Org. Chem. 1981, 46, 5248. Ko-zikowski, A. P.; Stein, P. D. J. Am. Chem. Soc. 1982, 104, 4023.
 Kozikowski, A. P.; Chen, Y. Y. Tetrahedron Lett. 1982, 23, 2081.
 Crawford, R. J.; Lutener, S. B.; Cockcroft, R. D. Can. J. Chem. 1976, 54, 3364.


⁽⁴⁾ Kozikowski, A. P.; Adamczyk, M. J. Org. Chem., in press.

Nakagawa, M. Bull. Chem. Soc. Jpn. 1972, 45, 2624.

⁽⁸⁾ The structure of the major isomer was verified by hydrolyzing 4 to the corresponding β -hydroxy acid and reacting this compound with excess methyllithium. The ¹H NMR of the resulting β -hydroxy ketone matched that displayed by the major isomer present in the hydrogenolysis mixture of the isoxazolines prepared from 2 and acetonitrile oxide.

 ⁽⁹⁾ Kozikowski, A. P.; Adamczyk, M. *Tetrahedron Lett.* 1982, 23, 3123.
 (10) Karabatsos, G. J.; Fenoglio, D. J. *Top. Stereochem.* 1970, 5, 167.
 (11) Caramella, P.; Rondan, N. G.; Paddon-Row, M. N.; Houk, K. N. J. Am. Chem. Soc. 1981, 103, 2438. For a related observation in a Diels-Alder reaction, see: Franck, R. W.; John, T. V.; Olejniczak, K.; Blount, J. F. Ibid. 1982, 104, 1106. The dominance of the anti-bonding effect of an allylic oxygen substituent was first suggested by Franck in this communication.

Scheme I

Table I.	Aldol Stereoselection Observed in the Addition of	
Various	Carbon Nucleophiles to 1	

nucleophile	erythro/threo, %	ref
	93/7 (+acetate >90:10)	6
Li, ZnI2	>95/<5	13
	85/15	14
	66/34	14
	66/34	14
Li 🗸	>95/<1	14

lection is, of course, related closely to that offered by Anh in support of the Felkin type transition state, i.e., the addition of a nuclephile to a carbonyl compound (bearing an α -asymmetric center) anti to the large group (the one having the lowest energy

 $\sigma^*_{C_2-X}$ orbital).¹² For comparison with current aldol technology, we list in Table I the erythro/threo ratios observed for the reactions of 1 with various carbon nucleophiles.

In conclusion, we suggest that the anti-directing effect of an allylic oxygen should be very useful in cycloadding chiral or achiral nitrile oxides to chiral olefinic units so as to produce β -hydroxy carbonyl compounds (aldol fragments) in a stereopredictable fashion. A variety of molecular systems that can be constructed through applications of this stereochemical concept are now under study.15

Acknowledgment. We are indebted to the National Institutes of Health (HL-20579) and the Camille and Henry Dreyfus Foundation for support of this work. We are grateful to Professor Houk for helpful discussions.

⁽¹²⁾ Anh, N. T. Top. Curr. Chem. 1980, 88, 145.
(13) Suzuki, K.; Yuki, Y.; Mukaiyama, T. Chem. Lett. 1981, 1529.
(14) Heathcock, C. H.; Young, S. D.; Hagen, J. P.; Pirrung, M. C.; White, C. T.; VanDerveer, D. J. Org. Chem. 1980, 45, 3846.
(15) The reactions of nitrile oxides with 3-buten-2-ol and its derivatives are less selective than for 2, except in the case where the hydroxyl group is protected as its *terr*-butyldimethylsilyl ether derivative. These results con-stitute unpublished observations by several groups: Kozikowski, A. P.; Ghosh, A. K.; Houk, K. N.; Moses, S., at the University of Pittsburgh, and Jäger, V. and co-workers at the University of Würzburg.